

Seeing the unseen; Monitoring drug precipitation by Nanoparticle Tracking Analysis

Cheska Gillespie Physchem Forum,Bracknell 23rd March 2011

Drug Precipitation and HTS

- HTS Discovery compounds stored dissolved in DMSO
- Aliquots of DMSO stock then utilised in screening¹
- Bioassays, kinetic solubility
- Majority of compounds synthesised poorly water soluble
- Bioassays stock added to aqueous buffer

1. Dehring, K. A.; Workman, H. L.; Miller, K. D.; Mandagere, A.; Poole, S. K., Automated robotic liquid handling/laser-based nephelometry system for high throughput measurement of kinetic aqueous solubility. Journal of Pharmaceutical and Biomedical Analysis **2004**, 36 (3), 447-456

Does the compound remain in solution?

- Growing realisation it may not ²
- Drug may precipitate due to poor aqueous solubility
- Can affect results in two ways;
 - 1. False negative not enough compound in solution to

react

2. False positive – promiscuous inhibition ³

2. Di, L.; Kerns, E. H., Biological assay challenges from compound solubility: strategies for bioassay optimization. Drug Discovery Today **2006**, 11 (9-10), 446-451.

3. Seidler, J.; McGovern, S. L.; Doman, T. N.; Shoichet, B. K., Identification and Prediction of Promiscuous Aggregating Inhibitors among Known Drugs. Journal of Medicinal Chemistry **2003**, 46 (21), 4477-4486

Project – Overall Aims

1. Investigate the physical chemistry behind what happens

when (poorly water soluble) drugs dissolved in DMSO are mixed with aqueous buffers

- 2. Relevant practically to pharma industry (screening)
- Unexplored physical chemistry precipitation/crystallisation at low concentrations

Model compound -Tolnaftate

Properties

MW – 307.4g/mol

Low aqueous solubility ($<3\mu$ M /0.9 μ g/mL⁴)

Neutral

Used as an anti fungal

4. Physchem forum solubility data, <u>http://physchem.org.uk/solubility_data.htm</u>, Feb 2011

Tolnaftate

From other experiments - known to precipitate at

concentrations relevant to drug screening

BUT

- Precipitation not visible to naked eye
- Utilised NanoSight and NTA to 'see' what was going on during precipitation process – results then compared to DLS

NanoSight Instrument and NTA

NanoSight LM10

Essentially a light scattering

technique

Instrument basically

consists of

1.laser light source

2.microscope (lens)

3.CCD camera

Sample Procedure

- Sample introduced into NanoSight chamber
- Image of particles' scattering of laser light recorded
- Video then analysed using NTA software
- Output Mean size (diameter), concentration, particle size

distribution

NanoSight – Recorded Video

NanoSight – Tracking Example

NanoSight and NTA – Particle Sizing[®]

From the Brownian motion, particle diameter can be

calculated using the Stokes-Einstein equation

The Diffusion Coefficient (D_t) from the mean squared

displacement of the particle tracked is calculated

All other parameters in equation are known, and so r_h can be calculated

NanoSight and NTA – Particle Concentration

Estimation of the concentration of the particles based on

assumed scattering volume calculated from the dimensions

of the field of view (at a given magnification)

- ✤ -depth of the laser beam.
- Average number of particles per millilitre of sample is then

extrapolated from the assumed scattering volume ⁵

5.NanoSight, L., NanoSight LM20 & NTA 2.0 Analytical Software Operating Manual, Version 2.1. 2009.

Main Differences – NTA and DLS

- 1. Image of the particles' scattering recorded in NTA
- 2. NanoSight gives an estimate of particle concentration
- 3. Calculated diameter based on individual particles ⁵

Tolnaftate Experiments

Samples monitored over a 3 hour time period

NanoSight Results – Mean Size

Growth over time and decreases in concentration (expected)

30µM ToInaftate t=0 mins

30µM ToInaftate =180mins

NanoSight Results – utilising concentration estimate

Calculation of amount of drug precipitating per timepoint

- 1. Calculate volume mean from particle size distribution
- 2. Volume fraction = $\pi/6d^3(cm^3) \times conc$ (no.particles/mL)
- 3. Mass concentration (g/mL) = vol. fraction x p
- This can then be converted to a μ M concentration

NanoSight Results – Conc. Calc.

Amount of drug precipitating at each timepoint

Time (Min)	Volume Mean (Adjusted not smoothed)/ nm	Concentration/10 ⁸ particles per mL	no of nanomoles of tolnafate present in the particles	% Of Drug Added
	040			
0	218	4.41	9.5	32
10	253	1.92	6.5	22
20	264	1 57	6.0	20
20	204	1.57	0.0	20
30	307	1.99	12.0	40
60	308	1.72	10.5	35
90	314	1.33	8.6	29
			0.0	
120	353	0.76	7.0	23
150	415	1.27	18.9	63
180	428	1.52	24.8	83

NanoSight Results - Distribution

Changes in particle size distribution

DLS Results – Mean Size

Similar trend seen with regards to increasing particle

diameter with time

DLS Results – Conc./Distribution

- ✤ No estimate of conc. can't perform calculation
- Could not detect changes in particle distributions
- ✤ No trend in changes in PDI over time
- Extensive comparison of techniques made by Filipe et al⁶

6. Filipe, V.; Hawe, A.; Jiskoot, W., Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates. Pharmaceutical Research **2010**, 27 (5), 796-810.

Conclusions

Technique can be used to monitor precipitation of poorly

soluble drugs

- Additional information obtained compared to that from DLS
- Precipitation at this concentration relevant to drug screening

Future Work - Tolnaftate

Explore whether factors that affect HPLC solubility data for

University of Strathch

drug can be see to affect particle size/distributions

From this link NanoSight data to HPLC solubility data

Acknowledgements

With thanks to;

- MSD Ltd and University of Strathclyde for funding contributions
- Prof. Peter Halling (Univ. Strathclyde)
- Dr Alan Kennedy (Univ. Strathclyde)
- Prof. Alastair Florence (Univ. Strathclyde)
- Dr Darren Edwards (Formerly MSD)
- Dr Pierre Daublain (Merck & Co, Inc)
- Jonathan Smith (NanoSight)
- Dr Anna Jawor-Baczynska (Univ. Strathclyde)
- The Halling research group