

Physical Chemistry; A Medicinal Chemist's Perspective

Rob Young Discovery Medicinal Chemistry, Stevenage

Physical Chemistry; A Medicinal Chemist's Perspective

- What regard to medicinal chemists pay to physical properties of their molecules?
 - Current landscape of drug discovery molecules
- Size and Hydrophobicity: key physical measures
 - Zolmitriptan: an old but salient story
 - Predictive modelling
- Case Studies: Factor Xa programme
- Solubility
- Impact of pKa: iNOS programme
- Key Concepts for medicinal chemistry

Physical Chemistry to most Medicinal Chemists?

Physical Chemistry to most Medicinal Chemists?

The influence of dark forces?

- Recent literature would suggest that the Med Chem community is not paying good attention to physical constraints
 - Hydrophobicity, Size and (by implication) Solubility...
- Trend towards bigger/more lipophilic molecules
 - Leeson & Springthorpe, nature reviews drug discovery 2007 6 881
 - Greater risks & attrition of such molecules

- Simple ADMET rules of thumb
 - Gleeson, J Med Chem 2008, 51(4), 817-834.
 - Highlights the implications of poor physical make-up

The Bigger Fatter Generation

- Analyses of trends in drug discovery highlight increase in the size and hydrophobicity of drug candidates
- L&S implicate resulting increased promiscuity in high attrition rate of compounds
- Even if average weight of drugs has increased, there is barely a shift in hydrophobicity

From Leeson & Springthorpe, nature reviews drug discovery 2007 6 881

Have we seen this kind of analysis before?

Profiling compounds using logD and cmr as a size surrogate

- GI Absorption Alan Hill c1989...
- Work that led to the GSK logD/cmr absorption model

Have we seen this kind of analysis before?

Profiling compounds using logD and cmr as a size surrogate

- GI Absorption Alan Hill c1989...
- Work that led to the GSK logD/cmr absorption model

Considered the two main routes of absorption from GI tract:

- Transcellular hydrophobicity dependent
- Paracellular size dependent
- Properties chosen to model these processes:
 - logD pH 7.4
 - CMR (calculated molar refractivity)

4 box model for absorption

Project data

Modelling Early Wellcome Compounds

A.P.Hill et al, Headache 1994, 34, 308.

Plasma levels vs PC properties: new series

The Final compound - zolmitriptan

311*C*90

(<u>5</u>)-4[[3-[2-(dimethylamino)ethyl]-1<u>H</u>-indol-5-yl]methyl]-2-oxazolidinone

Log DpH 7.4 = -1.00 CMR = 8.27

J. Med. Chem. 1995, 38(18), 3566-3580.

ADAMANTIS Permeation Model

N.B. This figure was more predictive of good F% than Caco data in "Clop"

Size and logD - for orally bioavailable molecules

C&P = Screening set being profiled Rob Young: Physchem Forum June 08

Size and logD - for orally bioavailable molecules

cmr

Human (Oral) Mean $clogD_{7,4} = 0.8$

Factor Xa as a target for oral therapy

- Pivotal role in coagulation cascade
 Prothrombin to thrombin cleavage
- Trypsin-like serine protease
 - Recognises basic AA in S1
- Many potent, basic, inhibitors reported
 - Poor oral DMPK profile
- Our goal: oral therapy (uid?)
 - Predictable/reliable DMPK profile
 - Good absorption, low metabolism; minimise risk of drug interactions
 - Avoid highly basic compounds

Rob Young; Physchem Forum June 08

Factor Xa "Hit to Lead" work: early days

- Racemic Azepine-amide from exploratory array chemistry
- Changing Gly to Ala linker gave increased potency
- 35-Stereochemistry preferred for pyrrolidinone substituent
- Numerous Ala-cyclic amides highly potent vs fXa
- BUT poor translation into anticoagulant activity (PT assay) & high in vitro metabolic turnover

BMCL, 2006, 16, 3784

Impact of hydrophobicity on metabolism

- Part of a broad data review
- Analysis clearly showed benefit of reduced hydrophobicity on lowering metabolism
 - From HT microsome assay; relative turnover vs verapamil
- Established ACDlogD_{7.4} as best hydrophobicity predictor
 - Correlation: mlogD/CHI & experimental observations

Impact of hydrophobicity: Anticoagulant activity

- Most active compounds generally the most hydrophobic
 - A common trend...
- Very few anywhere near target levels for anticoagulant activity
- Clear that potency translated into better anticoagulant effect with more hydrophilic molecules

Compound design: ACDclogD_{7.4} < 4</p>

N.B. data from older assays

FXa Lead Optimisation: first candidate

Plasma Protein Binding and logD

 Reducing logD had tangible effect on PPB, which was a likely influence on anticoagulant activity.

Molecular evolution towards a second candidate

 Highlighting key drivers of structure-property relationships *BMCL*, **2007**, *17*, 2927 *BMCL*, **2006**, *16*, 5953 *BMCL*, **2008**, *18*, 23 & 28

Molecular evolution towards a second candidate

 Highlighting key drivers of structure-property relationships *BMCL*, **2007**, *17*, 2927 *BMCL*, **2006**, *16*, 5953 *BMCL*, **2008**, *18*, 23 & 28

Molecular evolution towards a second candidate

Highlighting key drivers of structure-property relationships

BMCL, **2007**, *17*, 2927 *BMCL*, **2006**, *16*, 5953 *BMCL*, **2008**, *18*, 23 & 28

Fine tuning the process for a second candidate

• Leeson review. Post 1990, oral drugs median values: clogP 3.2, MW 420

Solubility: Yalkowsky Equation

- Log Sol = 0.5 -0.01(MP-25) LogP
 J.Chem. Inf. Comput. Sci. 2001, 41, 354
- Log of Solubility (Molar)
 - MP = Melting Point (Celsius)
 - LogP = log(Partition coefficient, $Oct:H_2O$)

Solubility: Yalkowsky Equation

- Log Sol = 0.5 -0.01(MP-25) LogP
 J.Chem. Inf. Comput. Sci. 2001, 41, 354
- Log of Solubility (Molar)
 - MP = Melting Point (Celsius)
 - $LogP = log(Partition coefficient, Oct: H_2O)$
- How can the implications of this be visualised?
 Simple means of understanding what it tells us!
- Used Excel to input MP 50 to 300 °C with LogP values of 0 to 7 in following graphs...

Calculated Solubility vs LogP

At a given logP, points are MP = 50 to 300

If average drug has clogP < 3...

If average drug has clogP < 3...

Impact on solubility of keeping logD in check

- Distribution of GSK measured solubility in ~2001 - 2005
 - Timeframe of fXa project
- Stevenage assay
 - From 10mM DMSO
 stock; 5% final [DMSO]
 - HPLC area comparison
- Is >50 µM a good solubility target for a drug?

Impact on solubility of keeping logD in check

Factor Xa programme

Working with Mother Nature

Responsibility taken for the outliers in this graph!

iNOS programme: Mimics of L-Arg

Importance of pKa values

	Structure	Rat		рКа		
Compound		F (%)	t _{1/2} (h)	acid	amine	amidine
Cys sulphone	$HN \xrightarrow{Me}_{H} O \xrightarrow{O} S \xrightarrow{O} CO_2 H$	<5	0.6	1.6	7.1	11.0
Cys sulphide		100	~ 2	2.0	8.4	11.4
hCys sulphide	HN H S CO ₂ H	100	4.3	2.1	8.9	11.4
Arginine	H_2N H_2N H_2N H_2 H_2CO_2H H_2	-	-	1.9	9.0	12.5

 Half-life and F% in the series showed importance of ionization of the molecules; compounds shown to be actively transported Are these key concepts in Medicinal Chemistry?

- Structure Property Relationships are more important than Structure Activity Relationships in Lead Optimisation
- Recognising the value and impact of physical measurements and predictions in compound profiling and design
 - Having a proper understanding of the meaning, implications and impact of parameters such as logP, $logD_{pH}$, pKa, solubility, PPB
 - AND knowing how to modulate them
- Use this physical knowledge to Hypothesise, Measure, Model, then Predict an expedient way forward in a lead optimisation programme?

Above all ...

Good drug molecules: a balance of size, weight and, particularly, lipophilicity

Acknowledgements

- Physical Chemistry
 - Alan Hill
 - Klara Valko; Pat McDonough; Chris Bevan; Shenaz Nunhuck
- In Silico Modelling
 - Sandeep Modi, Anne Hersey, Chris Luscombe
- Alan Hill, Alan Robertson 311C programme team members
- Nigel Watson and very many in the Factor Xa Project team
- Richard Knowles and very many in the iNOS project team

Acknowledgements

- Physical Chemistry
 - Alan Hill
 - Klara Valko; Pat McDonough; Chris Bevan; Shenaz Nunhuck
- In Silico Modelling
 - Sandeep Modi, Anne Hersey, Chris Luscombe
- Alan Hill, Alan Robertson 311C programme team members
- Nigel Watson and very many in the Factor Xa Project team
- Richard Knowles and very many in the iNOS project team

Remember:

Physical Chemists are very much our allies...

Better caricature of a Physical Chemist

