Presentation of a Structurally Diverse and Commercially Available Drug Data Set for Correlation and Benchmarking Studies

Anders Karlén
Uppsala University
Aim of study

• Derive a “benchmark data set“
 - Drug-like
 - Physicochemically diverse
 - Commercially available and inexpensive
 - Amenable to analytical measurements

• Start the generation of benchmark data
 - Derive good-quality data from the same lab
Possible use of the data set

- General description of drugs
- Developing ADME/TOX filters (permeability, solubility, plasma protein binding etc.)
- To validate novel experimental techniques
Generation of a “benchmark” data set based on the list of drugs in Sweden (FASS 2001)

Remove compounds
- Molecular weight >900
- Polymers, polypeptides
- Inorganic and metal containing

799 cpds -> 691 cpds -> 450 cpds

Select commercially available < $800/g

370 cpds -> 332 cpds -> 284 cpds

Remove “odd” ATC classes e.g. A01(Mouth and teeth), A05(Bile acids), A06 (Laxative)...

24-compound data set
Cost and availability of the 691-compound data set

Histogram

450 of the 691 compounds can be bought. Price range $0.03/gram - $3,228,000/gram (2001)

- Methenamine
- Calcitrol
Principal component analysis

- General descriptors
- General hydrogen bonding descriptors
- Hydrogen bond donor descriptors
- Hydrogen bond acceptor descriptors

$\Sigma 28$ molecular descriptors
Principal component analysis
The factorial design
“A face-centered central composite design”
24-compound data set

Thiamazole (− + +)
Amantadine (− + +)
Carbamazepine (− − −)
Chlorzoxazone (− + −)
Flupenthixol (− − −)
Fenofibrate (− − −)
Meclizine (− − −)
Terfenadine (− − −)

Captopril (0 + 0)
Sulindac (0 0 −)
Chlorprothixene (0 0 0)
Prednisone (0 0 0)
Metoclopramide (0 0 0)
Tetracycline (0 0 0)
Carisoprodol (0 0 +)
Fenofibrate (− − −)
Erythromycin (0 − +)

Levodopa (− + +)
Amiloride (+ + +)
Hydrochlorothiazide (− + −)
Terfenadine (− − +)
Levothyroxine (0 − 0)

The cost of buying the entire data set (at least 1 gram of each compound) is less than $1,500
Comparison of the data sets with respect to some common molecular descriptors

<table>
<thead>
<tr>
<th></th>
<th>691-compound data set</th>
<th>24-compound data set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>MW</td>
<td>60</td>
<td>854</td>
</tr>
<tr>
<td>PSA</td>
<td>0</td>
<td>373</td>
</tr>
<tr>
<td>log(P_{\text{Mor}})</td>
<td>−6.4</td>
<td>7.6</td>
</tr>
<tr>
<td>log(D_{\text{ACD,6.5}})</td>
<td>−10.6</td>
<td>12.3</td>
</tr>
<tr>
<td>HBD</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>HBA</td>
<td>0</td>
<td>19</td>
</tr>
</tbody>
</table>

Neomycin
HBD = 19

Candesartan cilexetil
\(\log P_{\text{Mor}} = 7.6\)
Comparison of the data sets with respect to functional groups
Comparison of the data sets with respect to ATC classes

The Anatomical Therapeutic Chemical (ATC) classification system is the most commonly used classification system for drug substances.

Distribution in ATC

<table>
<thead>
<tr>
<th>ATC</th>
<th>Description</th>
<th>24-set</th>
<th>691-set</th>
<th>24-set</th>
<th>691-set</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GI</td>
<td>1</td>
<td>69</td>
<td>4,2%</td>
<td>9,99%</td>
</tr>
<tr>
<td>B</td>
<td>Blood</td>
<td>0</td>
<td>21</td>
<td>0,0%</td>
<td>3,04%</td>
</tr>
<tr>
<td>C</td>
<td>Cardio</td>
<td>2</td>
<td>89</td>
<td>8,3%</td>
<td>12,88%</td>
</tr>
<tr>
<td>D</td>
<td>Topical</td>
<td>0</td>
<td>36</td>
<td>0,0%</td>
<td>5,21%</td>
</tr>
<tr>
<td>G</td>
<td>Gen.hormones</td>
<td>1</td>
<td>38</td>
<td>4,2%</td>
<td>5,50%</td>
</tr>
<tr>
<td>H</td>
<td>Hormones</td>
<td>3</td>
<td>14</td>
<td>12,5%</td>
<td>2,03%</td>
</tr>
<tr>
<td>J</td>
<td>Infection</td>
<td>5</td>
<td>89</td>
<td>20,8%</td>
<td>12,88%</td>
</tr>
<tr>
<td>L</td>
<td>Tum.,immuno</td>
<td>1</td>
<td>53</td>
<td>4,2%</td>
<td>7,67%</td>
</tr>
<tr>
<td>M</td>
<td>Muscle,mov.</td>
<td>3</td>
<td>37</td>
<td>12,5%</td>
<td>5,35%</td>
</tr>
<tr>
<td>N</td>
<td>Nervous</td>
<td>6</td>
<td>134</td>
<td>25,0%</td>
<td>19,39%</td>
</tr>
<tr>
<td>P</td>
<td>Antiparasite</td>
<td>0</td>
<td>13</td>
<td>0,0%</td>
<td>1,88%</td>
</tr>
<tr>
<td>R</td>
<td>Respiration</td>
<td>1</td>
<td>52</td>
<td>4,2%</td>
<td>7,53%</td>
</tr>
<tr>
<td>S</td>
<td>Eye,ear</td>
<td>1</td>
<td>24</td>
<td>4,2%</td>
<td>3,47%</td>
</tr>
<tr>
<td>V</td>
<td>Various</td>
<td>0</td>
<td>22</td>
<td>0,0%</td>
<td>3,18%</td>
</tr>
</tbody>
</table>
Start the generation of benchmark data. Derive good-quality data from the same lab

1. Measurment of pKa by pH-metric or pH-UV technique (n=20)

2. Measurment of lipophilicity
 (a) pH-metric logP (n=18)
 (b) capacity factors by RP-HPLC (n=21)

3. Measurment of intrinsic and kinetic solubility
 pH-metric solubility (CheqSol technique) or shake-plate solubility (n=17)

4. Measurment of permeability across Caco-2 Cells. A to B direction (n=22)
2. Lipophilicity
pH-metric measurement of logP and logD

logP missing for:
• Folic acid
• Carbamazepin
• Prednisone
• Carisoprodol

logP (neutral)

logD (pH 7.4)
2. Lipophilicity

Experimental logP vs calculated logP

- Crippen logP: $R^2 = 0.70$
- ACD/LogP: $R^2 = 0.88$
- ClogP (BioByte): $R^2 = 0.89$
- Moriguchi logP: $R^2 = 0.80$
2. Lipophilicity

Correlation between the measured HPLC capacity factor (k) and pH-metric log D (pH 6.8)

- Compounds from the 8 corner points have different colors
- The 2 compounds at each corner point have the same color
- The axis points are colored black
- Center point pink

$$R^2 = 0.92$$
3. Solubility

Measurement of intrinsic solubility using CheqSol
(24-compound data set)

Solubility ranges from 0.009 μg/ml to 2119 μg/ml
3. Solubility

19 of the compounds studied also present in the 691-compound data set

CheqSol solubility ranges from 0.9 μg/mL to 3500 μg/mL in these 19 compounds

In the 24-compound data set the solubility ranges from 0.009 μg/ml to 2119 μg/ml

<table>
<thead>
<tr>
<th>Name</th>
<th>Equilibrium solubility</th>
<th>Kinetic Solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CheqSol</td>
<td>Shake-Flask</td>
</tr>
<tr>
<td>1 Phthalic Acid</td>
<td>5330</td>
<td>5950</td>
</tr>
<tr>
<td>2 Quinine</td>
<td>363</td>
<td>201</td>
</tr>
<tr>
<td>3 Trazodone</td>
<td>134.6</td>
<td>138.0</td>
</tr>
<tr>
<td>4 Nitrofurantoin</td>
<td>112.5</td>
<td>109.5</td>
</tr>
<tr>
<td>5 Nortriptyline</td>
<td>27.0</td>
<td>49.3</td>
</tr>
<tr>
<td>6 Verapamil</td>
<td>48.5</td>
<td>48.5</td>
</tr>
<tr>
<td>7 Niflumic Acid</td>
<td>9.53</td>
<td>29.5</td>
</tr>
<tr>
<td>8 Imipramine</td>
<td>17.2</td>
<td>21.7</td>
</tr>
<tr>
<td>9 Flumequine</td>
<td>34.2</td>
<td>20.7</td>
</tr>
<tr>
<td>10 Furosemide</td>
<td>19.7</td>
<td>20.4</td>
</tr>
<tr>
<td>11 Maprotiline</td>
<td>5.80</td>
<td>8.05</td>
</tr>
<tr>
<td>12 Piroxicam</td>
<td>5.92</td>
<td>5.95</td>
</tr>
<tr>
<td>13 Warfarin</td>
<td>5.30</td>
<td>5.25</td>
</tr>
<tr>
<td>14 Chlorpromazine</td>
<td>2.70</td>
<td>2.41</td>
</tr>
<tr>
<td>15 Lidocaine</td>
<td>3500</td>
<td>3810</td>
</tr>
<tr>
<td>16 Famotidine</td>
<td>740</td>
<td>1100</td>
</tr>
<tr>
<td>17 Hydrochlorothiazide</td>
<td>630</td>
<td>700</td>
</tr>
<tr>
<td>18 Chlorpheniramme</td>
<td>608.3</td>
<td>615.2</td>
</tr>
<tr>
<td>19 Sulfamerazine</td>
<td>200.3</td>
<td>203.0</td>
</tr>
<tr>
<td>20 Ketoprofen</td>
<td>130.6</td>
<td>178.0</td>
</tr>
<tr>
<td>21 Propranolol</td>
<td>81.0</td>
<td>70.0</td>
</tr>
<tr>
<td>22 Ibuprofen</td>
<td>50.0</td>
<td>49.0</td>
</tr>
<tr>
<td>23 Pindolol</td>
<td>41.7</td>
<td>32.7</td>
</tr>
<tr>
<td>24 Miconazole</td>
<td>1.00</td>
<td>0.67</td>
</tr>
<tr>
<td>25 Diclofenac</td>
<td>0.90</td>
<td>0.80</td>
</tr>
<tr>
<td>26 Amodiaquin</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>27 Pamoic acid</td>
<td>0.0003</td>
<td></td>
</tr>
</tbody>
</table>

Compound not present in the 691 data set
24-compound data set is structurally diverse
4. Permeability/absorption

![Graph showing permeability comparison between Caco-2 and human jejunum cells.]
4. Permeability/absorption

In vitro P_{app} values in human Caco-2 cells
Suggestions on the “Uppsala diverse data set” usage

- The 24 compounds can be used
 - as a test set for testing already derived models of permeability, lipophilicity, solubility etc.
 - as a validation set for new experimental techniques
 - on its own for building and validating models by dividing it into a training set and a test set

We hope that other groups are willing to help us to supplement the herein-started characterization

“Bench mark data set”

J. Med. Chem.; (ASAP); 2006; 49(23); 6660-6671
Acknowledgements

Faculty of Pharmacy
Uppsala University
Christian Sköld
Torbjörn Lundstedt
Anders Hallberg
Hans Lennernäs

Sirius Analytical Instruments Ltd
John Comer
Karl Box
Ruth Allen
Jon Mole

AstraZeneca R&D Mölndal
Susanne Winiwarter
Anna-Lena Ungell
Johan Wernevik
Fredrik Bergström
Leif Engström