Early BioPharm Risk Assessment in Discovery

Linette Ruston PCF9

17th September 2010, Barcelona

Outline

- Background
- Why?
- How?
 - cMAD and early absorption simulation
- Case Studies & Examples
- Summary

Poor Solubility

- increased risk, cost and time to development
- incomplete absorption may be expected
- enabling technologies may be required
- bridging between formulations adds complexity to clinical program

Increased Bio.Pharm risk

Why do we need early Bio.Pharm. Risk Assessment?

- Better informed choice of short-list candidates
- Identify projects/chemical series where Bio.Pharm. risk is likely to delay project delivery &/or complicate (pre)clinical program

Maximum Absorbable Dose (MAD)

- A drug must be in solution to be absorbed
- MAD is a composite parameter of solubility and permeability
- If MAD < Dose incomplete absorption may be expected

Solubility	Permeability
<u>Biorelevant media</u> (FASSIF or HIF) <u>Aqueous buffer</u> Measured value at pH 6.5 or pH extrapolation from pH 7.4 solubility	Approx Ka / min ⁻¹ (rat perfusion) <u>Typical Values</u> low = 0.001 moderate = 0.03 high = 0.05

MAD, Solubility & Permeability

- A highly permeable drug is OK if solubility is low
- For a moderately permeable drug, a solubility of around <u>60 μ g/ml</u> (<u>120 μ M</u>) is needed to reach F_{abs} of 50 %

Project X: Options to Substitute Cpd 1

	Cpd 1	Cpd A	Cpd B
In vivo efficacy	YES	YES	YES
Buffer Solubility (pH 7.4 μM)	8	530	41
Predicted Dose (mg) BID	500	240	500
Predicted MAD (mg)	60	3407	802

- A and B matched Cpd 1 efficacy in disease model
- Top predicted human dose < 500 mg
- MAD > Top predicted human dose
- CPD1 substituted by CPDA and CPDB

Early Dose Prediction (DMPK)

Early MAD

- Measured buffer solubility (shake flask pH 7.4, 25℃)
- Measured or predicted pKa
- Assume moderate/high permeability
 - Unless chemical space or measured permeability suggests otherwise

• cMAD

- All compounds with measured solubility
- Rank compounds within a project or chemical series

Early Absorption Simulation

More complex model for key project compounds

cMAD (Curatolo MAD Calculation)

 cMAD is the quantity of drug that could be absorbed if the small intestine could be saturated for 4.5 hours

- A simple tool to assess solubility in the context of dose
- Allows ranking of compounds within chemical series
- Does not replace more complex absorption models

W Curatolo, PSTT, 1, (9), **1998**: Physical chemical properties of oral drug candidates in the discovery and exploratory development settings

cMAD & Early Absorption Simulation

Early Absorption Simulation	cMAD
9 compartment model <u>Inputs</u> Equilibrium Sol in buffer (mg/mL) pKa Mod/High permeability (no transporter effect)	Single tank <u>Inputs</u> Equilibrium Sol in buffer (mg/mL) Extrapolation to pH 6.5 Mod/High permeability (no transporter effects)
pH gradient Accounts for supersaturation	Fixed pH No supersaturation or precipitation Conservative Estimate

Typical Screening Cascade

Solubility Assessment

- Equilibrium solubility in aqueous buffer (pH 7.4) is measured from solid material
- Final form is assessed by polarised light microscopy (PLM)
- Samples classified as crystalline, semicrystalline or amorphous and results uploaded to database
- PLM data helps contextualise solubility result

A project snapshot

	(0.11)	(mg/kg)	(mg)	cMAD (mg)	MAD (mg)	
	871	3.8	266	4386	6227	
Amorphous	12	0.34	23.8	67	410	MAD Dage
Semicrystalline	625	0.72	50.4	3000	5729	Reduced
	59	1.34	93.8	306	1504	BioPharm Risk
Semicrystalline	21	0.61	42.7	112	629	
Semicrystalline	125	1.67	116.9	628	265	
		4.15	290.5			
Crystalline	2	4.9	343	13	93	
Crystalline	5	9.04	632.8	28	195	MAD < Dose
Semicrystalline		6.62	463.4			Increased BioPharm Bisk
Semicrystalline	2	11.65	815.5	12		
Semicrystalline	14	10.61	742.7	28	268	
Crystalline	2	28.88	2021.6	4	23	
Crystalline	3	13.55	948.5	14	106	
	145	31.05	2173.5	705	274	
Semicrystalline	41	16	1120	195	104	
		20.86	1460.2			
Semicrystalline	2	496.5	34755	8	59	
Semicrystalline	148			568	1964	
Solubility & PLM (fin	(pH 7.4) al form)	Early Do Esti	Human ose mate	cMAD (Curatolo eqn) Extrapolated sol (pH 6.5) Ka 0.024 min ⁻¹ (Mod/High)	Early Absorption From pH 7.4 buffe LogD & Mod/High	Simulation er sol, pKa, Perm
	Amorphous Semicrystalline Semicrystalline Crystalline Crystalline Semicrystalline Semicrystalline Crystalline Crystalline Semicrystalline Semicrystalline Semicrystalline Semicrystalline Semicrystalline	Amorphous 12 Semicrystalline 625 59 Semicrystalline 21 Semicrystalline 125 Crystalline 2 Crystalline 5 Semicrystalline 2 Semicrystalline 14 Crystalline 2 Semicrystalline 3 145 Semicrystalline 41 Semicrystalline 2 Semicrystalline 3 Semicrystalline 41 Semicrystalline 148	Amorphous 12 0.34 Semicrystalline 625 0.72 59 1.34 Semicrystalline 21 0.61 Semicrystalline 125 1.67 Semicrystalline 125 1.67 Crystalline 2 4.9 Crystalline 5 9.04 Semicrystalline 5 9.04 Semicrystalline 2 11.65 Semicrystalline 2 11.65 Semicrystalline 14 10.61 Crystalline 2 28.88 Crystalline 3 13.55 Semicrystalline 145 31.05 Semicrystalline 41 16 20.86 20.86 20.86 Semicrystalline 148 5 Solubility (pH 7.4) Early & PLM (final form) Esti	Amorphous 12 0.34 23.8 Semicrystalline 625 0.72 50.4 59 1.34 93.8 Semicrystalline 21 0.61 42.7 Semicrystalline 125 1.67 116.9 Morphous 12 0.61 42.7 Semicrystalline 125 1.67 116.9 Crystalline 2 4.9 343 Crystalline 5 9.04 632.8 Semicrystalline 6.62 463.4 Semicrystalline 2 11.65 815.5 Semicrystalline 14 10.61 742.7 Crystalline 2 28.88 2021.6 Crystalline 3 13.55 948.5 Semicrystalline 41 16 1120 20.86 1460.2 20.86 1460.2 Semicrystalline 148 5 34755 Semicrystalline 148 5 5 Solubility (pH 7.4) K Early Human Dose Estimate 5	Amorphous 12 0.34 238 67 Semicrystalline 625 0.72 50.4 3000 59 1.34 93.8 306 Semicrystalline 21 0.61 42.7 112 Semicrystalline 125 1.67 116.9 628 Semicrystalline 125 1.67 116.9 628 Crystalline 2 4.9 343 13 Crystalline 5 9.04 632.8 28 Semicrystalline 6.62 463.4 Semicrystalline 1 10.61 742.7 28 Semicrystalline 1 10.61 742.7 28 Crystalline 2 28.88 2021.6 4 Crystalline 1 16 1120 195 Semicrystalline 41 16 1120 195 20.86 1460.2 34755 8 568 Semicrystalline 148	Amorphous 12 0.34 205 4.000 00227 Semicrystalline 12 0.34 23.8 67 410 Semicrystalline 59 1.34 93.8 306 1504 Semicrystalline 21 0.61 42.7 1112 629 Semicrystalline 125 1.67 116.9 628 265 Crystalline 2 4.9 343 13 93 Crystalline 5 9.04 632.8 28 195 Semicrystalline 6.62 463.4 Semicrystalline 14 10.61 742.7 28 268 Crystalline 2 13.55 948.5 14 106 Semicrystalline 145 31.05 2173.5 705 274 Semicrystalline 41 16 1120 195 104 20.86 1460.2 34755 8 59 59 S

Use Early MAD in conjunction with early Dose Estimate

Early Absorption Simulation (Pharm. Dev)

More complex absorption modelling has been employed to provide better understanding of BioPharm risks for long-list compounds

Dose (g)	%Fabs
0.5	49
1.0	30
2.5	14
5.0	8

Dose / mg	% Fabs Colon Off	Amount absorbed (mg)
1.00	97.35	0.97
1.78	97.35	1.73
3.16	97.35	3.08
5.62	97.34	5.47
10.00	97.32	9.73
17.78	97.28	17.30
31.62	97.18	30.73
56.23	96.88	54.48
100.00	95.76	95.76
177.83	87.48	155.56
316.23	65.82	208.14
562.34	45.12	253.73
1000.00	29.50	295.00
1778.28	18.74	333.25
3162.28	11.68	369.35
5623.41	7.19	404.32
10000.00	4.38	438.00

MAD 438mg

AstraZenec

Nick Stainforth, AstraZeneca, Pharm. Dev.

16

Early GISim Compound X

MAD << Predicted Human Dose

Method	MAD (mg)	Comment
cMAD (mod/high permeability, buffer sol)	10	Conservative estimate
Early Absorption Simulation (permeability range, buffer sol, pKa)	44-124	Little change in MAD over time
Absorption Simulation (Pharm. Dev) (caco2 permeability and FaSSIF sol)	110	Dose prediction increased

Early Absorption Simulation

9 compartment model simulates absorption profile through GI tract

Accounts for enhanced solubility at low pH and potential supersaturation effects upon gastric emptying

FaSSIF vs Buffer Solubility

- Buffer solubility is generally not predictive of FaSSIF solubility
- Greater solubility enhancement in FaSSIF is generally seen for poorly soluble compounds

18

Biorelevant Solubility

- Buffer solubility may underestimate absorption potential (Dressman/Amidon lit)
- FaSSIF or HIF media generally accepted as standard for early absorption modelling
- Pharm. Dev. Measurements are low throughput & require stable crystalline form
- HT FaSSIF solubility assay for discovery
- Data previously only available for short-list & development compounds
- Enables early MAD evaluation with biorelevant solubility data

FaSSIF solubility measurements

Media from Pharm.Dev group	
Samples from collection Ideally crystalline material	Well characterised solid state, usually stable crystalline form
Tecan Automation (96 well format) Single shot 24 h timepoint 37 ℃ Centrifugation Single point calibration PLM assessment of final form Results in discovery database Facilitates SPR analysis	Single compound Duplicate 1 and 24 h timepoints 37 ℃ Ultracentrifugation Multiple LC calibration stds

AP FaSSIF Solubility Method

- Modified standard shake flask solubility protocol
- ~1.5 mg solid (ideally crystalline material)
- 1 mL buffer or biorelevant media
- 24h agitation at 37 ℃
- Separation of undissolved solid by centrifugation
- PLM assessment of final solid form
- Analysis by gradient LCUVMS vs single point standard in DMSO solution

AP FaSSIF Solubility Strategy

- Access to biorelevant solubility measurements for wide range of chemistries
- Use to refine early MAD estimations
- Assess likely BioPharm risk for chemical series/project
- SPR learning
- Informed selection of short-list compounds with reduced BioPharm risk
- Identify projects where further evaluation is required
 - Consultation with BioPharm experts
 - More detailed studies: dissolution/precipitation, alternative media, may require alternative formulation for safety/efficacy...

Astra7en

Summary

- Early human dose estimation and MAD assessment allows early Bio.Pharm risk assessment using discovery data
- Influence Med.Chem. design
- Discovery FaSSIF solubility
- Refined MAD analysis
- Influence short-lists
- SPR analysis

